Using an Evolutionary Algorithm to Solve the Weighted View Materialization Problem for DataWarehouses

نویسندگان

  • Neal Wagner
  • Vikas Agrawal
چکیده

A common problem in data warehousing is reduction of response time for ad-hoc queries. To reduce query processing time, a selected number of views are materialized. Selecting the optimal number of views in a data warehouse is known to be an NP-complete problem as no feasible deterministic algorithm exists. In this paper we discuss a weighted materialized view selection (MVS) problem where both the amount and importance of data retrieved are considered. Existing versions of the MVS problem only consider the amount of data retrieved and ignore the relative importance of data to the data warehouse user. We apply an Evolutionary Algorithm (EA) to solve the weighted MVS problem in which a higher priority is given to the optimization of high-demand queries over infrequently-used queries. Several experiments are conducted on large sized data sets that are commonly found in real world applications. EA results are compared to those obtained by the best known heuristic algorithm for this weighted MVS problem from the current literature. EA is shown to outperform the heuristic algorithm for all experiments conducted.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pareto-based Multi-criteria Evolutionary Algorithm for Parallel Machines Scheduling Problem with Sequence-dependent Setup Times

This paper addresses an unrelated multi-machine scheduling problem with sequence-dependent setup time, release date and processing set restriction to minimize the sum of weighted earliness/tardiness penalties and the sum of completion times, which is known to be NP-hard. A Mixed Integer Programming (MIP) model is proposed to formulate the considered multi-criteria problem. Also, to solve the mo...

متن کامل

Minimizing the energy consumption and the total weighted tardiness for the flexible flowshop using NSGA-II and NRGA

This paper presents a bi-objective MIP model for the flexible flow shop scheduling  problem (FFSP) in which the total weighted tardiness and the energy consumption are minimized simultaneously. In addition to considering unrelated machines at each stage, the set-up times are supposed to be sequence- and machine-dependent, and it is assumed that jobs have different release tim...

متن کامل

New Ant Colony Algorithm Method based on Mutation for FPGA Placement Problem

Many real world problems can be modelled as an optimization problem. Evolutionary algorithms are used to solve these problems. Ant colony algorithm is a class of evolutionary algorithms that have been inspired of some specific ants looking for food in the nature. These ants leave trail pheromone on the ground to mark good ways that can be followed by other members of the group. Ant colony optim...

متن کامل

Evolutionary User Clustering Based on Time-Aware Interest Changes in the Recommender System

The plenty of data on the Internet has created problems for users and has caused confusion in finding the proper information. Also, users' tastes and preferences change over time. Recommender systems can help users find useful information. Due to changing interests, systems must be able to evolve. In order to solve this problem, users are clustered that determine the most desirable users, it pa...

متن کامل

A cloud-based simulated annealing algorithm for order acceptance problem with weighted tardiness penalties in permutation flow shop scheduling

Make-to-order is a production strategy in which manufacturing starts only after a customer's order is received; in other words, it is a pull-type supply chain operation since manufacturing is carried out as soon as the demand is confirmed. This paper studies the order acceptance problem with weighted tardiness penalties in permutation flow shop scheduling with MTO production strategy, the objec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012